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Psychiatric disorders are often conceptualized as arising from dys-
functional interactions between neural systems mediating cognitive
and emotional processes. Mechanistic insights into these interac-
tions have been lacking in part because most work in emotions
has occurred in rodents, often without concurrent manipulations of
cognitive variables. Nonhuman primate (NHP) model systems pro-
vide a powerful platform for investigating interactions between
cognitive operations and emotions due to NHPs’ strong homology
with humans in behavioral repertoire and brain anatomy. Recent
electrophysiological studies in NHPs have delineated how neural
signals in the amygdala, a brain structure linked to emotion,
predict impending appetitive and aversive stimuli. In addition,
abstract conceptual information has also been shown to be rep-
resented in the amygdala and in interconnected brain structures
such as the hippocampus and prefrontal cortex. Flexible adjust-
ments of emotional behavior require the ability to apply conceptual
knowledge and generalize to different, often novel, situations, a
hallmark example of interactions between cognitive and emo-
tional processes. Elucidating the neural mechanisms that explain
how the brain processes conceptual information in relation to
emotional variables promises to provide important insights into
the pathophysiology accounting for symptoms in neuropsychiatric
disorders.
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The ability to do, think, and feel in a flexible manner is a fun-
damental feature of human behavior. This flexibility relies on

the ability to generalize from knowledge of past experiences and to
adapt instantly in novel ones. This type of generalization can occur
by virtue of our capacity to abstract “shared features” in the en-
vironments we experience, whether these are directly observable
or hidden, and to crystallize these features into “concepts.” Sub-
sequently, these concepts can serve as organizing principles to
understand environments never experienced before. Difficulties in
processes such as abstraction and generalization can thereby im-
pact our interpretation of the environment, leading to psychiatric
symptoms ranging from distortions of reality in psychotic disor-
ders, where patients typically lack abstraction abilities, to disrup-
tions in affective state or anxiety, where patients do not flexibly
regulate their emotions.
One of the central applications of the ability to abstract and

generalize is to assign predictive (rewarding or aversive) values
to environmental stimuli in novel situations. Anticipatory emotional
responses to sensory stimuli require accurate prediction of the
positive or negative emotional outcome associated with a stimulus
presentation. This prediction does not only rely on knowing the
link between a sensory stimulus and reinforcement, as such links
may differ depending upon the circumstances. In addition, the
costs of actions required to acquire a reward or avoid an aversive
stimulus may affect value assessments; these costs can also be
context dependent. Adaptive emotional responses to sensory
stimuli therefore rely on knowing how a stimulus, potential actions,
and the overall current set of circumstances—or context—together

predict a particular outcome. Of note, context here is defined
broadly as the set of circumstances in which the subject operates,
including internal (e.g., information about cognitive, affective,
and homeostatic variables) and external (e.g., information about
the environment) variables. As a result, a neural representation
that represents the meaning of predicted reinforcement outcome
must account for context-dependent effects.
Nonhuman primate (NHP) models offer a unique opportunity

to explore high-level cognition because of the richness of their
behavioral repertoire, among the closest to those of humans. NHPs
also possess strong brain homology to humans. NHPs are perhaps
unique among nonhuman mammals in possessing, like humans, a
well-developed internal granular layer in prefrontal cortex (PFC)
(1–3). In general, extensive elaboration, specialization, and
differentiation evolved in primate PFC (4–8) compared to
other animal models. Moreover, although some aspects of
amygdala anatomy and neurochemistry are relatively conserved
across species, anatomical studies have pointed out differences
in the convergence of cortical inputs into the amygdala (9, 10).
Stereological analyses showed significant differences in volume
and neuronal density across the lateral, basal, and accessory
basal nuclei in monkeys compared to rats (11). In addition, the
primate amygdala possesses elaborated, bidirectional connectivity
with medial and orbital PFC (12–19) and the visual cortex (20), a
dominant sensory modality in primates. NHP models therefore
provide an essential intermediate step for understanding funda-
mental mechanisms involving cortico-limbic operations that un-
derlie interactions between cognitive and emotional processes.
The development and testing of circuit-based therapeutics may
ultimately rely on NHP models due to these critical anatomical
homologies and to the mechanistic insight being provided by
studies in NHPs (21).
In this article, we first review NHP studies that have contrib-

uted to the understanding of processes related to reinforcement
outcome anticipation, which are fundamental to emotional be-
havior since emotions often adjust in anticipation of impending
rewarding or aversive events. Next, we review studies aimed at
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understanding higher-level processes that can adjust representa-
tions of reinforcement expectation. These processes include the
assessment of a current situation in terms of recent reward history,
which can adjust how a particular stimulus is valued, and even
higher-level operations that involve abstraction of hidden (not
observable) variables used to flexibly assign meaning to stimuli.
Although the reviewed studies focus on neurophysiological

mechanisms in behaving NHPs, these mechanisms have clinical
applications. In particular, impairments in accurately antici-
pating reinforcement outcomes—whether due to impairments
in emotional learning or in cognitive processes that help regulate
emotions—can lead to difficulties that underlie many psychiatric
disorders. For example, these impairments can lead to decision-
making difficulties contributing to addictive behavior. Further-
more, difficulties in coordinating emotional responses flexibly lies
at the core of several anxiety and mood disorders, and of disorders
in which paranoia is prominent. Even some symptoms of person-
ality disorders—where neurobiological insights into cause are
lacking—may arise from the inability to flexibly generalize and
regulate affective and cognitive processes.

The Role of Amygdalar Circuits in Outcome Anticipation
For many years, the amygdala had been studied during the ac-
quisition and expression of defensive behaviors elicited by an
aversive conditioned stimulus (CS) or unconditioned stimulus
(US) (reviewed in ref. 22), largely in rodents. However, substantial
evidence indicates that the amygdala is involved in learning the
relationship between a CS and both appetitive or aversive USs, as
well as in coordinating responses to these stimuli (22–27). The
initial view that the amygdala was specialized for aversive pro-
cessing may have resulted from studies that only studied negative
emotional valence; it remained unclear whether the same amyg-
dala neurons participated in processing both positive and negative
emotional valences. Moreover, studies in rodents had almost ex-
clusively utilized either auditory or olfactory CSs. In primates,
vision is a dominant sensory modality, so investigating how the
amygdala assigns emotional significance to visual stimuli was
clearly important.
Paton et al. (28) exploited monkeys’ visual capabilities and

employed a trace-conditioning task containing a contingency
reversal for 2 visual CSs to establish that the amygdala appears to
contain distinct appetitive and aversive neural systems. In this
task, each CS was initially paired with an appetitive (liquid reward)
or aversive (air puff) outcome, respectively (Fig. 1 A and B). After

monkeys learned these associations, reinforcement contingencies
reversed. Monkeys learned the new associations. Anticipatory
licking and blinking reflected the monkeys’ subjective valuation
of impending USs and closely tracked the objective reinforcement
to be received on every trial; thus, in this task, subjective valuation
and objective reinforcement associated with stimuli were highly
correlated. Individual amygdala neurons often responded prefer-
entially to either positively or negatively conditioned CSs both
before and after the reversal in contingencies (Fig. 1C). Such
neurons were defined as encoding the positive or negative value
of a CS based on the differential response to a CS when paired
with rewarding or aversive USs. Value-coding neurons in the
amygdala updated their response to a CS fast enough to account
for behavioral learning of the reversed reinforced contingencies.
Monkeys capacity to learn and reverse stimulus–outcome contin-
gencies rapidly, just like humans can, was critical to the success of
these experiments; behavioral paradigms that achieve such rapid
learning and reversal are not easily realized in rodents.
Many value-coding neurons actually responded to stimuli of

both valences but consistently responded more strongly to
stimuli associated with either positive or negative valence (Fig.
1C). Nonetheless, analyses of simultaneously recorded neu-
rons indicated that a greater frequency of short-latency peaks in
shuffle-corrected cross-correlograms were observed for pairs of
neurons sharing the same response selectivity compared to other
pairs (29). These data provided physiological evidence for distinct
and preferentially connected appetitive and aversive amygdalar
circuits.
How does the amygdala acquire and update knowledge of

the valence of stimuli? Error signals reflecting the difference
between expected and received reinforcement have long been
thought to be important for such learning (30, 31). Neurophysiological
reflections of prediction errors have been shown in different
brain areas, including reward prediction errors (RPEs) carried by
midbrain dopamine neurons (32, 33), and as well as lateral
habenula medial PFC (34–36), striatum (37–39), globus pallidus
(40), and lateral habenula (41). Neurons in this last nucleus in
particular encode prediction errors with the opposite valence
compared to dopaminergic neurons, responding most strongly
when an aversive stimulus is unexpected (41).
Given that the amygdala represents expected appetitive and

aversive outcomes, an important question concerns whether ev-
idence links RPEs and value representations in the amygdala. To
address this question, Belova et al. (42) showed that neural
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Fig. 1. Amygdala neurons represent the positive and negative valence of CSs. (A) Sequence of a trace-conditioning trial. Monkeys centered gaze at a fixation
point for 1 s and viewed a fractal image for 300 ms. US delivery followed a 1,500-ms trace interval. (B) Task structure. Positive images, liquid reward; negative
images, aversive air puff; nonreinforced images, no US. After monkeys learned initial contingencies, image reinforcement contingencies switched without
warning. (C) PSTHs for 2 neurons. Reward trials, blue; air puff trials, red. Image 1 was initially rewarded, then paired with air puff after reversal; image 3,
opposite contingencies. (Left column) Positive value-coding neuron, responding more strongly to both images when rewarded. (Right column) Negative
value-coding neuron, responding most strongly when air puff follows each image presentation. Reprinted with permission from ref. 28.
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responses to reinforcement in the amygdala were often stronger
when a rewarding or aversive US occurs unexpectedly, such as
immediately after a reversal in CS–US contingencies, or at a
random time (42). These responses differed from classic RPE
signals because they lacked a prototypical phasic, short-latency
response emblematic of RPEs, as amygdala responses were
typically sustained. Moreover, since CSs predicted reinforcement
with 80% probability, the authors were able to examine neural
responses upon reinforcement omission. Response modulation,
a signature of RPE signals, was not observed. Nonetheless, there
was a significant statistical association between whether expec-
tation modulated responses to a US and whether the same cell
also encoded the value of a CS, suggesting a link between these
response properties. Interestingly, the basal forebrain, a struc-
ture bidirectionally connected with the amygdala, also contains
neurons in which expectation modulates responses to USs
without registering reinforcement omission (43).
Amygdala neurons also exhibited a diversity in response profiles

to unexpected USs. Some neurons enhanced responses to an un-
expected reward or to an aversive stimulus, but not both, which are
valence-specific modulations. These neural responses are more
analogous to signals observed in dopamine neurons or the habenula,
respectively (32, 41), without characteristic phasic responses
and modulation by reinforcement omission. Other neurons mod-
ulated responses to both valences of unexpected USs, a valence-
nonspecific profile similar to that observed in rodents (44). The
amygdala projects to brain structures involved in autonomic re-
sponses (45). Since autonomic arousal can occur in relation to both
positive and negative emotional states of high intensity, neurons
that respond to unexpected reinforcement in a valence-nonspecific
manner might mediate such autonomic arousal, or attention that
can be amplified in relation to both emotional valences.
A key concept in reinforcement learning models is that values

are assigned to states (31). Neurophysiological evidence indicates
that amygdala neurons represent not just reinforcement expected
upon encountering a stimulus, but instead represent the value of a
state. An animal experiences a variety of states even in a simple
conditioning protocol (46). Specifically, amygdala neurons’ re-
sponses to a fixation point, which monkeys voluntarily foveate to
begin a trial, reflects the mildly positive value that this stimulus
possesses to motivated subjects (46). Neurons belonging to the
appetitive system (those that respond more strongly to a CS when
it predicts a reward than when the same CS predicts an aversive
stimulus) tend to increase their firing rate in response to a fixation
point, but neurons belonging to the aversive system tend to de-
crease their firing rate to the same fixation point. Moreover,
neurons in the appetitive system tend to fire more strongly to re-
warding USs, and neurons in the aversive system have the opposite
response profile (46), a finding confirmed in rodents at the pop-
ulation level (47). These findings raise the possibility that the
amygdala represents the motivational significance of many types of
stimuli. Indeed, one recent result suggests that neural ensembles
in the amygdala that encode the value of CSs also encode infor-
mation about the hierarchical rank of conspecifics within a social
group (48). Hierarchical status is social information that can in-
fluence many emotional and cognitive operations.
The same expected reward can have different motivational

meanings (and thereby different state values) depending upon
internal variables, such as knowledge of the magnitude of other
recently received rewards. To study the neurophysiology mediating
this assignment of motivational meaning, the activity of neurons
in the amygdala and orbitofrontal cortex (OFC) (Brodmann area
13/13m) of monkeys were recorded during a Pavlovian task in
which the relative amount of liquid reward associated with one CS
was manipulated by changing the reward amount associated
with a second CS (49). Anticipatory licking tracked relative
reward magnitude, implying that monkeys integrated informa-
tion about recent rewards—a process that changes an internal

state variable—to adjust the subjective meaning of a CS. Upon
changes in relative reward, neural responses in the amygdala and
OFC also updated, despite the fact that the US associated with
the CS had not changed (Fig. 2) (49). These results tie neural
response properties in the amygdala and OFC to state value as
manipulated by recent reward history. Strikingly, neural responses
to reward-predictive cues updated more rapidly in OFC than
amygdala, and activity in OFC but not the amygdala was corre-
lated with recent reward history (49). These results highlight a
distinction between the amygdala and OFC in assessing reward
history to adjust an internal state variable to support flexible as-
signment of motivational meaning to sensory cues.
Other studies have reported neural signals in amygdala that

reflect expected reward value over long timescales during plan-
ning (50). Grabenhorst et al. (51) reported prospective amygdala
signaling of immediate, current-trial choices and self-determined
choice sequences that determined distant rewards. Thus, mon-
keys could implement internal plans to save reward consumption
until the end of a sequence of trials, increasing overall reward
since deferring reward resulted in reward increased by an “in-
terest rate” (50). This response profile could reflect plans up to 2
min in the absence of external cues (52). Activity in the amygdala
is thereby not limited to the assignment of valence to stimuli
about to be received, but also reflects planning that determines
long-term cumulative reward. Many aspects of these results may
be viewed as an extension of the notion that the amygdala en-
codes state value, as signals related to planning that results in
increased reward may reflect the value of the state in part de-
fined by an internal plan to receive more reward later. The
mechanisms of this type of cognitive influence on amygdala
neural activity is ripe for investigation.

Cortico-Amygdalar Mechanisms and Their Role in the
Regulation of Emotions
The amygdala is anatomically interconnected with a broad range
of cortical and subcortical brain structures likely responsible
for its role in emotional expression and for interactions be-
tween cognitive and emotional processes (18, 45). Within PFC,
one prominent bidirectional anatomical pathway lies between the
amygdala and OFC (12, 15–17). Both amygdala and OFC repre-
sent the motivational significance of sensory stimuli (5, 53–56), and
they are thought to play an important role in value-based decision
making (5, 22, 24, 26, 50–52, 57, 58). Neurons in OFC track pos-
itive and negative value in a consistent manner across the different
sensory events in a conditioning trial, including the fixation point,
CS, and US presentations (26, 54, 59). Moreover, OFC neural
responses are correlated with monkeys’ behavioral use of in-
formation about both rewarding and aversive CSs (60, 61).
OFC has long been conceptualized as a more cognitive brain

area than the amygdala (62), and it has been proposed as a key
structure in mediating reversal learning—a task often used to
study flexible updating of reinforcement expectation—by some
(but not all) studies (63–70). Leveraging the richness of bidirec-
tional amygdala–cortical connectivity of NHP models, the physi-
ological role of the amygdala and OFC in reversal learning was
recently studied (28, 61). In principle, flexible adjustment of re-
inforcement expectation during reversal learning can involve
2 types of mechanisms, a trial-by-trial learning process or an in-
ferential mechanism. In trial-by-trial learning, each CS–US (or
action–US) association is learned independently upon reversal.
Although behavioral training can lead to faster learning rates,
learning about each CS–US is a distinct process. In reversal
learning mediated by inference, knowledge of the structure of the
task—whereby all CS–US contingencies switch simultaneously—
can enable a subject to adjust their responses to the first appear-
ance of a CS after a reversal if a different CS has already been
experienced after the reversal.
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Morrison et al. (61) examined OFC (area 13/13m) and amyg-
dala neurophysiological responses using a reversal-learning study
and showed that appetitive and aversive networks in OFC and
amygdala exhibit different learning rates in the 2 brain areas. For
positive cells, changes in OFC neural activity after reversal oc-
curred more rapidly than those in positive cells in the amygdala; for
negative cells, the aversive network in the amygdala learned more
rapidly than in OFC (Fig. 3). In each case, the faster-changing area
was completing its transition around the time of the onset of
changes in behavior. The findings suggest that distinct sequences of

neural processing lead to the updating of representations within
appetitive and aversive networks within these structures. Perhaps
the faster learning response of the aversive network in the amyg-
dala reflects the preservation across evolution of an aversive system
that learns very quickly in order to avoid threats (71).

Neural Representations of Conceptual Information and Their
Potential Role in Flexible Cognitive and Emotional Behavior
In the studies described until now, NHPs were learning and
relearning contingencies in different situations. In real life, this is

Fig. 2. Neurons in the amygdala and OFC represent the relative amount of reward associated with a CS. (A) Population average firing rate plotted as a
function of trial number for amygdala neurons that responded selectively to the amount of expected reward. (Left) Activity changes in relation to a re-
valuation of CS1 (orange), which occurs by increasing the reward amount associated with CS2 (purple). (Right) Activity changes in relation to a second re-
valuation of CS1, which now occurs by decreasing the reward amount associated with CS2. (B) Average firing rate of neurons in A for each block. **P < 0.01
(Wilcoxon sign-rank test). (C and D) Same as A and B, except for neurons recorded in OFC. Adapted from ref. 49, with permission from Elsevier.

Fig. 3. Neurons within appetitive and aversive networks in amygdala and OFC update responses to changed reinforcement contingencies at different rates. Time
course of changes in value-related signals in amygdala and OFC plotted as a function of time and trial number relative to reversal (A–D). For each bin, an index
computed for each cell the proportion of variance accounted for by image value divided by the total variance using a 2-way ANOVA (61), and this index was
averaged across populations. (A and B) Average contribution of image value in positive value-coding neurons in OFC (A) and amygdala (B). (C and D) Same as A
and B, except for negative value-coding cells. Black asterisks, time when the contribution-of-value index becomes significant (asterisks placed in center of the first
of at least 3 consecutive significant bins; Fisher P < 0.01). Bin size, 200 ms. Bin steps, 20 ms. Adapted from ref. 61, with permission from Elsevier.
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the equivalent of learning that some sources of heat can burn if
touched. Of course, humans can abstract a concept, “heat,” and
apply it flexibly to different sources of heat to not get burned
every time they get close to a stove, yet still expect pleasure from
a hot shower. In this example, both an abstract concept (heat),
and 2 rules (heat can burn, or be comforting), can be used to
adjust behavior, even upon seeing a stove or other source of heat
never seen before. Subjects do not need to relearn the contin-
gencies of the newly observed stove to adjust responses. Instead,
subjects can generalize to the new situation, or context, and avoid
touching the stove.
Investigation of context-dependent changes in contingencies

has occurred in rodents, typically employing contexts cued by sen-
sory stimuli, such as through using different textures in 2 chambers
(72), but providing an exhaustive review of these studies is be-
yond the scope of this review. Overall, in those studies, explicit
(observable) contextual cues signal the rules governing the re-
lationship between the environment and reinforcement. This
bears similarity to the cases where each shower is labeled with
“comforting heat” and each stove is labeled with “do not touch,
risk of burning.”
The ability to adjust behavior flexibly in a context-dependent

manner—yet when the contexts are not cued—requires that the
brain represent hidden variables, such as rules. NHPs provide an
important platform for studying context-dependent behavior
when contexts are described by hidden variables. The encoding
of rules in PFC has been extensively investigated in NHP models
(73–75), but in similar rodent studies, experiments have rarely
used an uncued rule. Moreover, investigation of the role of PFC
in creating neural representations that can support generaliza-
tion to new situations has not occurred. Generalization to new
situations is a critical element of human cognition, including the
ability to anticipate outcomes in novel situations and consequently
regulate emotional responses. Most studies of emotion have fo-
cused on learning mechanisms (e.g., fear learning, or extinction),
but mechanisms by which the brain constructs representations of
conceptual information that can be used to regulate emotions have
remained largely unstudied.
Saez et al. (76) recently investigated the nature of conceptual

information and its use in the process of stimulus–value updating
in changing contexts. Here, monkeys performed a serial reversal-
learning task in which 2 CS–US pairs switched contingencies
many times every experiment. Each day, monkeys would be pre-
sented with 2 novel CSs and would learn which one was paired
with a reward US and which with nothing. The CSs then switched
contingencies many times in experiments, with each set of CS–US
pairs comprising a “task set.”
Unlike in Morrison et al. (61), in this study, monkeys’ behavior

suggested they employed inference to update reinforcement ex-
pectation, as assayed by anticipatory licking. Monkeys adjusted
their licking in a switch-like manner after recognizing that re-
inforcement contingencies had changed. As soon as they expe-
rienced that one CS had switched contingencies, they inferred
that the second CS had also changed contingencies and adjusted
their licking. This behavior was consistent with the possibility
that upon experiencing one switched CS–US contingency, mon-
keys can generalize their knowledge of task structure (i.e., the
task sets that defined 2 contexts) and apply it to the other CS.
We refer to each task set as a “context,” although it should be
reiterated that context is an implicit, not perceptually cued, rule.
This type of inference has not, to our knowledge, been reported
in rodents during serial reversal-learning tasks, and it is likely
mediated by the extensive elaboration of the PFC (and perhaps
amygdala) in monkeys. These results suggest that the monkeys
acquired and retained a “mental map,” a representation of the
rules of the task. It is important to keep in mind that this is a
mental map of the rules governing environmental contingencies;
therefore, context is an implicit variable, not perceptually cued,

as opposed to a mental map of locations and the concrete ex-
ternal environment of the agent.
During performance of this task, Saez et al. (76) recorded

single units from the amygdala, the anterior cingulate cortex
(ACC) (another part of PFC bidirectionally connected with the
amygdala) and the OFC (Brodmann areas 13, 13m). They used a
linear decoder to analyze task-relevant signals as a function of
time by considering populations of neurons collectively (Fig. 4).
Information about the map—the task set—was encoded not only
in ACC and OFC but also in the amygdala (76). This signal
reflected a process of abstraction (76). Strikingly, errors in be-
havior (licking when no reward was going to be delivered, or not
licking when reward was going to occur) were correlated with the
failure to maintain upon stimulus appearance a representation of
the context in the amygdala (76).
The data reported by Saez et al. (76) indicate that inference

can be used by monkeys and that neural activity that reflects this
process is represented not only in PFC, but also in amygdala.
Inference is a cognitive process that can occur by knowing con-
cepts. Concepts, in turn, may be thought of as arising from a
process of abstraction, a process that finds features, whether
explicit or hidden, shared by instances. The process of abstrac-
tion is an active area of research in reinforcement learning, as it
provides a solution for the notorious “curse of dimensionality,”
i.e., the exponential growth of the solution space required to
encode all states of the environment (77). In real life, the ab-
straction of the concept of heat obviates the need to touch every
heat source to discover its burning properties. However, a clear
account of how the brain may represent abstract variables has
remained elusive, and this is a critical issue for understanding
many cognitive functions, including the regulation of emotion.
Concepts (“abstract” variables) can correspond to hidden

variables not directly observable in the environment, as well
as to explicit variables, such as a perceptual category, like color.
Moreover, the same stimulus or event may be described by
multiple abstract variables, allowing generalization to different
types of situations. Returning to our previous example, the
concept of heat includes an understanding that heat can burn, as
well as the fact that heat can make you sweat. Thus, one can link
“heat” to these 2 abstract variables (and more). With the goal
of elucidating how the brain represents abstract information,
Bernardi et al. (78) employed a task in which monkeys per-
formed a more complex serial reversal-learning task; this task
included an operant action, and switching between 2 uncued task
sets (Fig. 5). Each set had 4 trial conditions containing different
stimulus–response–outcome mappings. The stimuli, responses,
and reinforcement outcomes were explicit variables (observable),
while the 2 task sets were described by a hidden variable.
This task engaged a series of cognitive operations, including

perceiving a stimulus, making a decision as to which action to
execute, and then expecting and sensing reward to determine
whether an error occurred so as to update the decision process
on the next trial. Monkeys exhibited inference, as they would
adjust their behavior after a reversal on the first appearance of a
trial condition if they had already experienced other switched
types of trial conditions.
Bernardi et al. (78) recorded neural activity in anterior hippo-

campus (HPC), dorsolateral PFC (DLPFC), and ACC. The HPC
was targeted in this study because of its role in generating episodic
associative memories, as well as its role in processes of abstraction
suggested by imaging studies (79, 80). PFC areas were targeted
because encoding of rules has been reported (73, 74). Moreover,
a recent study observed that different oscillatory dynamics might
reflect different functional roles for categorization based on
bottom-up features or more abstract concepts, with ventrolateral
PFC gamma oscillations more engaged for lower-level abstrac-
tion and DLPFC beta for higher-level abstraction (81).
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Ponsen et al. (82) define abstraction as an operation that
changes the representation of an object by hiding or removing less
critical details while preserving desirable properties, a process that
could enable generalization upon encountering other similar but
novel objects. Bernardi et al. (78) sought to determine whether
neural ensembles represented variables in a manner reflecting
abstraction. They therefore did not only ask whether a neural
ensemble represents information. Instead, they also determined
whether the format of a representation would support general-
ization to novel situations. A variable was defined as being rep-
resented in an abstract format if a linear decoder could be trained
to classify it on a subset of trial conditions (e.g., only on trial types
A and B), and then be used to correctly classify the variable
on held-out trial conditions (e.g., trial conditions C and D).
The decoder’s ability to classify task conditions not previously

“experienced” by the decoder was used as a quantitative index
as to whether the representation of a variable was generalizable
and hence in an abstract format. Note that this use of a decoder
differed from using a decoder to determine whether a neural en-
semble simply encodes a variable, which traditionally entails training
and testing a decoder on the same types of trial conditions.
Neural ensembles in DLPFC, ACC, and HPC were observed to

represent multiple variables in an abstract format simultaneously
during performance of this serial reversal-learning task. Prior to
the stimulus presentation of a trial, in DLPFC and ACC, the
recently performed action reflecting a decision, the reinforcement
recently received, and the hidden variable context were all rep-
resented in abstract format. The HPC encoded the context and
value of the recent trial in an abstract format, but not the action,
which was represented but not in an abstract format.

Fig. 4. Neural ensembles in amygdala, OFC, and ACC encode uncued contexts, stimulus identity, and expected reinforcement. (A) Decoding performance for context
and CS identity in amygdala, OFC, and ACC (250-ms sliding window, 50-ms steps). Blue, OFC; purple, ACC; green, amygdala. Shaded areas, 95% confidence intervals
(bootstrap). Vertical dashed lines, CS onset and earliest possible US onset. (B) Decoding performance for reinforcement expectation plotted vs. time relative to image
onset. (C) Timing of onset of CS identity (blue) and reinforcement expectation (black) signals in OFC, ACC, and amygdala (50-ms sliding window, 5-ms steps for 500-ms
window shown inA and B by gray shading). Vertical dashed lines (and labels) indicate the first time binwhere decoding performance is significantly above chance level
and remains there for 10 time bins. Shaded areas, 95% confidence intervals around chance (shuffle). Adapted from ref. 76, with permission from Elsevier.
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Fig. 5. Serial reversal-learning task in which 2 stimulus–response–outcome task sets define 2 contexts. Monkeys hold a bar and then fixate to begin a trial.
Upon viewing an image, monkeys must hold or release a bar to perform correctly. Two stimuli in each context were rewarded after correct decisions (context
1: A, C; context 2: B, C).
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The content and format of representations of these variables
changed as task events engaged the cognitive operations needed to
perform the task. After an image appeared, neural representations
of the planned action and the expected reward occur more rapidly
in DLPFC and ACC than in HPC, suggesting that these prefrontal
areas may play a more prominent role in the decision process.
Notably, value and action were in abstract format in all brain areas
shortly after image onset, but context was not abstract in the
DLPFC despite being decodable. In ACC, context was only weakly
abstract despite being strongly decodable. In order to make a
correct decision on this task, information about context must
be “mixed” nonlinearly with information about the stimulus.
Thus, a brain area mediating the decision process may not
maintain the representation of context in an abstract format
after a stimulus appearance. Both the rapid emergence of
neural signals reflecting the action and value of the current
trial, and the fact that the representation of context becomes
less abstract, suggests a primary role for the PFC, especially
DLPFC, in decision making on this task. Nonetheless, prior to
the presentation of the stimulus on the next trial, the repre-
sentation of the hidden variable context evolves into an ab-
stract format in all 3 brain structures. These results highlight
how the format in which a variable is represented can distinguish
between the coding properties of brain areas, even when the
content of information represented in those areas is similar.

Conclusion
Neuropsychiatric disorders are not merely disorders of emo-
tion. Instead, dysfunction in cognitive operations—operations
that form, encode, and utilize representations of conceptual in-
formation—play a vital role in mechanisms that regulate or update
emotional responses to environmental events. Electrophysiological
studies in NHPs have now described how appetitive and aversive
amygdalar networks are updated during learning, and how amyg-
dala signals are related to neural signals in the OFC upon reversals
in contingencies. More recent studies have provided insights into
how abstract variables are represented in the brain, a function
critical to being able to adjust emotional and cognitive behavior
upon encountering new situations. Future studies must delineate
how these representations of abstract variables are created and
utilized to confer such flexibility.

Efforts to understand the neural underpinnings of how ab-
stract variables are represented and utilized are vital to the
understanding of psychiatric morbidity. In humans, disruption in
the neural mechanisms underlying the attribution of value, and
therefore the modulation of anticipatory emotions and decision
making, often leads to maladaptive patterns of behavior. For ex-
ample, addiction is commonly understood as resulting from dis-
ruption in circuitry that normally processes reward-predictive
stimuli and that must regulate behavioral responses to such stimuli,
a process that must utilize conceptual information to generalize
appropriately (71, 83). Deficits in contextual processing—even
when contexts are not explicitly cued—can lead to interper-
sonal sensitivity with failures in emotional regulation such as
that observed in social anxiety and borderline personality disorders
(84) and schizophrenia (71, 85). Moreover, the inability to con-
textualize how stimuli and actions are related to aversive events
can lead to posttraumatic stress disorder (86). The development of
transformative treatment strategies for a range of psychiatric dis-
orders likely relies on our acquiring a much more detailed un-
derstanding of neural circuitry dedicated to processing rewarding
and aversive information, and their interactions with circuitries
responsible for cognitive functions (71, 87). Because of brain ho-
mology and the richness of its behavioral repertoire, NHP models
likely will prove to be a critical platform for developing new
treatments. This model has already proven powerful for treat-
ments of movement disorders, such as Parkinson’s disease, by
using brain stimulation informed by neurophysiological studies.
Persistence and creativity in experimental approaches promise the
same rewards for helping cure the complex symptomatology of
neuropsychiatric illness.
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